Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions
نویسندگان
چکیده
Synaptotagmin (syt) serves as a Ca(2+) sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca(2+), but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca(2+) triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.
منابع مشابه
Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions
Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synap...
متن کاملPush-and-pull regulation of the fusion pore by synaptotagmin-7.
In chromaffin cells, Ca(2+) binding to synaptotagmin-1 and -7 triggers exocytosis by promoting fusion pore opening and fusion pore expansion. Synaptotagmins contain two C2 domains that both bind Ca(2+) and contribute to exocytosis; however, it remains unknown whether the C2 domains act similarly or differentially to promote opening and expansion of fusion pores. Here, we use patch amperometry m...
متن کاملVisualization of synaptotagmin I oligomers assembled onto lipid monolayers.
Neuronal exocytosis is mediated by Ca(2+)-triggered rearrangements between proteins and lipids that result in the opening and dilation of fusion pores. Synaptotagmin I (syt I) is a Ca(2+)-sensing protein proposed to regulate fusion pore dynamics via Ca(2+)-promoted binding of its cytoplasmic domain (C2A-C2B) to effector molecules, including anionic phospholipids and other copies of syt. Functio...
متن کاملSynaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion.
In regulated vesicle exocytosis, SNARE protein complexes drive membrane fusion to connect the vesicle lumen with the extracellular space. The triggering of fusion pore formation by Ca(2+) is mediated by specific isoforms of synaptotagmin (Syt), which employ both SNARE complex and membrane binding. Ca(2+) also promotes fusion pore expansion and Syts have been implicated in this process but the m...
متن کاملSynaptotagmin VII Restricts Fusion Pore Expansion during Lysosomal Exocytosis
Synaptotagmin is considered a calcium-dependent trigger for regulated exocytosis. We examined the role of synaptotagmin VII (Syt VII) in the calcium-dependent exocytosis of individual lysosomes in wild-type (WT) and Syt VII knockout (KO) mouse embryonic fibroblasts (MEFs) using total internal reflection fluorescence microscopy. In WT MEFs, most lysosomes only partially released their contents, ...
متن کامل